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Abstract

This course gives a concise but simple understandable elaboration
of the special theory of relativity close to how Albert Einstein did it.

1 The Special theory of relativity

1.1 Slowdown of clocks and contractions in the direc-
tion of velocity

Assume two non-rotating1 reference systems K and K ′ (relatively) move
with velocity v along parallel x-axes as in Figure 1. A point event P
has, relatively to K, a location given by the coordinates (x, y, z) and time
t. The same event has, relatively to K ′, the coordinates (x′, y′, z′) and time
t′. Assume, for simplicity, the y-axes (of K and K ′) coincide for t = 0 and
t′ = 0 (i.e. the clocks for K and K ′ are synchronized and set to zero when
the y-axes coincide).

Assume a light beam starts from the origin of K ′ along its y-axis at
t′ = 0 (i.e. when the y-axes of K and K ′ coincide). Let us call this event
P1 which for both K and K ′ has x-coordinate 0 and time 0 (for simplicity:
(x, t) = (x′, t′) = (0, 0)).

Let us call P2 the incident that the light beam reaches a point p′ on
the y′-axis. Recall that the velocity c of light is a universal constant (the
same relatively to both K and K ′). The point event P2 has K- and K ′-
coordinates respectively (x, t) = (vt, t) and (x′, t′) = (ct′, t′). An observer
moving with K ′ will observe the light has traveled a distance equal to x′ =√

(ct)2 − (vt)2. This gives that t′ = t
√

1 − v2/c2 So an observer moving with

K will see that a clock moving with K ′ slows down with a factor
√

1 − v2/c2

1relative to the fix starts
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Figure 1: Two events, P1 and P2, as viewed by an observer in rest relative
to the coordinate system K. P1 is the start of a light beam when the y-axes
coincide. P2 is the event that the light beam reaches a point p′ on the y-axis
of K ′.

An observer moving with K ′ will see that the origin of K has moved a

distance of x
√

1 − v2/c2 during this time (i.e. he will see a contraction of

objects moving with K in the velocity direction with a factor
√

1 − v2/c2).
K will observe the same contraction for K ′.

1.2 The Lorenz transformation

Figure 2 illustrates two moving coordinate systems, K and K ′, in a similar
situation as above (for Figure 1). The relative velocity v is along the x-axes
and the clocks of K and K ′ are synchronized when the y-axes coincide. P1

is the event that the origin of K ′ passes the y-axis of K (i.e. it has for both
K and K ′ coordinates (x, t) = (x′, t′) = (0, 0). P2 is the event that a point
p′ on the x-axis of K ′ passes above a point p on the x-axis of K.

Let (x, t) and (x′, t′) be the coordinates of the event P2 relatively to K and
K ′ respectively. Following the arguments in Section 1.1 about contractions
in the x-direction we get that

x′ =
x− vt√
1 − v2/c2

(1)
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Figure 2: Two events, P1 and P2, as viewed by an observer in rest relative
to the coordinate system K. P1 is the passage of the origin of K ′ cross the
y-axis of K. P2 is the event that the point p′, with fixed position relatively
to K ′, passes a similar fixed point on the x-axis of K.

and vt′ = x
√

1 − v2/c2 − x′. This gives:

t′ =
t− v

c2
x√

1 − v2/c2
(2)

Symmetry simply gives:
y′ = y (3)

z′ = z (4)

Equations 1, 2, 3 and 4 are called the Lorenz transformation.

1.3 Energy is equivalent to mass (E = mc2)

The fact that light has momentum indicates that mass and energy are equiva-
lent entities. Light in a box with perfect mirror walls behaves like containing
mass requiring force to accelerate. Consider, similarly to the light beam of
Figure 1, an object with mass m moving relatively to a coordinate system K ′

along its y-axis with velocity u. The y-component of its velocity relatively

to K is u
√

1 − v2/c2. Assuming conservation of momentum (mass times ve-

locity), this gives that the mass relatively to K has increased with a factor

of 1/
√

1 − v2/c2.

3



Assume an object with initial (”rest”) mass m which is equivalent to the
amount of energy E, and assume it has a small velocity (v � c). The total

energy is E/
√

1 − v2/c2 which by Taylor expansion gives:

E√
1 − v2/c2

= E − E v2

2 c2
+

3E v4

8 c4
+ O(v)5 (5)

However, Newtonian mechanics is proved valid for small velocities. This
gives:

1

2
E
v2

c2
=

1

2
mv2 (6)

This gives:
E = mc2 (7)

2 The general theory of relativity

Given two point events P1 and P2 with respective position vectors r1 =
(x1, y1, z1, t1) and r2 = (x2, y2, z2, t2) relatively to the inertial coordinate sys-
tem K. Let r = r2 − r1 denote the displacement vector from P1 to P2

(relatively to K). Given the notation in component form: r = (x, y, z, t).
Let r′ = (x′, y′, z′, t′) similarly denote the displacement vector from P1 to P2

relatively to another coordinate system K ′.
The Lorentz transformation (Equations 1, 3, 4 and 2) give:

x2 + y2 + z2 − (ct)2 = x′2 + y′2 + z′2 − (ct′)2 (8)

(Compare this with Figure 1).
...to be continued...
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